На сегодня основным используемым типом аккумуляторов для ИБП и автономных решений являются кислотно-свинцовые и литий-ионные аккумуляторы.

 На рынке сегодня можно найти много разновидностей кислотно-свинцовых (LA = lead-acid) аккумуляторов и АКБ. Это стартерные, GEL, AGM, OPzV, OPzS. И из описаний «различных» типов LA аккумуляторов создаётся впечатление, что можно некоторым образом подобрать их и, заплатив таки весьма приличную сумму, надолго избавиться от этой проблемы. Однако это совсем не так.

Как бы красиво не назывался LA аккумулятор, в нём всегда есть водный раствор серной кислоты, свинец и их многочисленные соединения. Все прочие добавки в виде кальция, сурьмы, серебра … если и влияют на химические реакции, протекающие в ячейках, то только в худшую сторону. Применение этих добавок вызвано в основном физическими свойствами чистого свинца, а именно его мягкостью, которая не позволяет применять чистый свинец в АКБ автомобилей и других транспортных средств из-за вибраций и ударов. Классическая призматическая компоновка ячеек LA АКБ, мягко говоря, малооптимальна, батареи же из ячеек рулонного (циллиндрического) типа стоят несоразмерно дорого.
LA АКБ лучше всего работают при температуре около 25°С, при понижении температуры теряется  их электрическая ёмкость, а при повышении температуры снижается ресурс (количество циклов заряда-разряда). Так AGM батарея при 25°С может работать 10 лет, а при 33°С - только 5 лет, а при 42°С - 1 год. Оптимальная глубина разряда LA аккумуляторов обычно не превышает 30%, а при превышении оптимальной глубины разряда опять-таки снижается ресурс, причём иногда для того чтобы необратимо «убить» такой аккумулятор достаточно один раз разрядить его в ноль (например, на сильном морозе это легко сделать, как и случается с незаводящимися автомобилями). Вообще LA АКБ не любят недозаряда, хотя и перезаряд также вреден для них, и лучше всего работают в буферном режиме, а в системе автономного энергоснабжения АКБ работает в циклическом режиме. А, поскольку, любая батарея это последовательная цепочка из первичных ячеек, которые не могут быть совершенно идентичными, всегда возникает проблема разбалансировки уровней заряда на разных ячейках. Либо одни ячейки недозаряжаются, либо другие ячейки перезаряжаются, и проконтролировать это подручными средствами очень трудно. Несмотря на то, что все эти проблемы давно известны, не существует за внятные деньги аппаратуры, следящей за уровнями заряда для каждой ячейки, вероятно из-за того, что эти АКБ умирают тихо, а простейшие стартерные батареи стоят сравнительно недорого и в любом случае эксплуатируются в недружественных температурных режимах.

Это далеко не все, но вполне достаточные причины, чтобы считать LA аккумулятор очень нежным устройством. Этот аккумулятор может отработать заявленное количество циклов, но Вы должны постоянно следить за уровнем заряда в каждой его ячейке и эксплуатировать его при 20-25°С. Насколько это реально? Думаю, что это совершенно невыполнимая задача для простого пользователя. А результатом будут убитые за год-два аккумуляторы, может быть самые дорогие и стойкие продержаться три-четыре года. Поскольку же время жизни LA АКБ очень сильно зависит от множества трудно выдерживаемых в реальной жизни параметров, не один продавец не сможет внятно сказать, сколько реально прослужат LA АКБ именно у Вас. Зато открывается широкое поле для всякого рода недоговорённостей и умных слов, смысл которых сводится к следующему: кислотно-свинцовые АКБ у рядового пользователя ВСЕГДА проработают в несколько раз меньше в сравнении с максимально заявляемым сроком. Выражение «в несколько раз» при интенсивной эксплуатации я оцениваю как число между двумя и семью. И, наконец,  последний гвоздь в крышку гроба кислотно-свинцовых аккумуляторов. Они заряжаются очень долго – просто непозволительно долго. Нормальный ток зарядки в амперах для них составляет всего лишь 10% от амперчасов ёмкости АКБ (такой ток называется C/10 или 0,1C). Это означает следующее: даже если Вы возьмёте самые стойкие элементы OPzS и будете разряжать их до допустимых (но не оптимальных!) для них 70% разряда, то заряжать их Вам придётся около 6 часов, а потом «добивать» в импульсном режиме оставшиеся 5-10% ёмкости ещё 3-5 часов. Это не проблема для резервных систем, заряжаемых от сети, но очень неэффективно для автономных, внесетевых систем, и уж совсем неэффективно для зимней автономии, когда по времени солнца очень мало. Для добивки (полной зарядки) АКБ в пасмурную погоду потребуется несколько часов малопродуктивной работы топливного генератора практически на холостом ходу. А ведь все топливные генераторы не очень любят работать без нагрузки, т.е. в режиме холостого хода, они быстро теряют свой ресурс. Если же LA АКБ не дозаряжать, в них активно развиваются процессы сульфатации пластин, приводящие к снижению срока службы и реальной ёмкости. Сейчас на рынке появились LA АКБ, которые производитель «позволяет» заряжать до 80% ёмкости токами 0,3С, однако все основные параметры паспортной ёмкости как и прежде позиционируются на 0,05С. Это значит, что заряжая LA АКБ в таком режиме мы уменьшаем их ресурс и снижаем электрический КПД* АКБ. Для LA АКБ КПД = 65-80% (в зависимости от конкретного производителя и скоростей заряда и разряда)

Литий-ионные аккумуляторы, а именно LiFePO4 АКБ последнего поколения выглядят более предпочтительно как для использования в системах полной автономии так и для серьёзных резервных систем. Их КПД в автономных системах 96-99%. Диапазон рабочих температур от -40 до +60°С. В диапазоне от  0 до +35°С без существенного  снижения ёмкости и ресурса. Хорошо держат глубокий разряд. Циклический заряд-разряд до 60-80% от номинальной ёмкости абсолютно нормальное явление для литиевых АКБ. 100%-й разряд не убивает литиевую АКБ, а только незначительно (менее 0,1%) снижает её общий ресурс. Количество глубоких циклов заряда-разряда достигает 5-8 тысяч, что существенно превосходит показатели кислотно-свинцовых АКБ.  Ток зарядки литиевых АКБ может достигать 3С. Реально же нужны меньшие значения в диапазоне 0,3-0,5С, что позволяет за 1-2 часа заряжать АКБ. Причём необязательно заряжать АКБ на 100%, для литиевых батарей это несущественно. А ведь именно в режиме неполного заряда очень часто работает система автономного энергоснабжения.

Литиевая АКБ в сравнении с аналогичной по номинальной ёмкости AGM дороже последней приблизительно в 3,5 раза. Однако AGM имеет оптимальную глубину разряда около 40 %, и соотношение цен за эффективный ватт-час равно уже 2-м. Вспоминаем сроки жизни сравниваемых АКБ. Для AGM заявленный срок работы в буферном режиме при 25°С составляет 7 лет, при циклическом режиме 2-3 года, т.е. около 1000 циклов, для LiFePO4 батарей срок жизни как таковой не существует, кол-во же циклов таково, что можно говорить о 25 годах циклической эксплуатации. Т.е. время жизни LiFePO4 в 8-12 раз больше чем AGM. Подытоживая всё вышесказанное, итоговая стоимость 1 полезного кВт-ч в AGM будет в 5-8 раз выше чем в LiFePO4.

Кроме того важным преимуществом LiFePO4 АКБ является то, что в процессе работы они ничего не выделяют, их можно устанавливать в любом месте дома или офиса. А вот кислотно-свинцовые АКБ изначально требуют отдельного помещения с вентиляцией и поддержанием температуры в +20 +25°С, что сразу же удорожает вроде бы небольшую начальную стоимость этих АКБ.

* Коэффициент использования энергии или КПД АКБ, показывает отношение энергии, отданной АКБ, к энергии, израсходованной для её заряда